Homomorphism Preservation on Quasi-Wide Classes
نویسنده
چکیده
A class of structures is said to have the homomorphism-preservation property just in case every firstorder formula that is preserved by homomorphisms on this class is equivalent to an existential-positive formula. It is known by a result of Rossman that the class of finite structures has this property and by previous work of Atserias et al. that various of its subclasses do. We extend the latter results by introducing the notion of a quasi-wide class and showing that any quasi-wide class that is closed under taking substructures and disjoint unions has the homomorphism-preservation property. We show, in particular, that classes of structures of bounded expansion and that locally exclude minors are quasiwide. We also construct an example of a class of finite structures which is closed under substructures and disjoint unions but does not admit the homomorphism-preservation property.
منابع مشابه
First order properties on nowhere dense structures
A set A of vertices of a graph G is called d-scattered in G if no two d-neighborhoods of (distinct) vertices of A intersect. In other words, A is d-scattered if no two distinct vertices of A have distance at most 2d. This notion was isolated in the context of finite model theory by Gurevich and recently it played a prominent role in the study of homomorphism preservation theorems for special cl...
متن کاملOn nowhere dense graphs
A set A of vertices of a graph G is called d-scattered in G if no two d-neighborhoods of (distinct) vertices of A intersect. In other words, A is d-scattered if no two distinct vertices of A have distance at most 2d. This notion was isolated in the context of finite model theory by Gurevich and recently it played a prominent role in the study of homomorphism preservation theorems for special cl...
متن کاملMinimum cost homomorphisms to locally semicomplete digraphs and quasi-transitive digraphs
For digraphs G and H, a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H, the minimum cost homomorphism problem for H, denoted MinHOM(H), can be formulated as follows: Given an input digra...
متن کاملMinimum Cost Homomorphisms to Locally Semicomplete and Quasi-Transitive Digraphs
For digraphs G and H , a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (G) is associated with costs ci(u), i ∈ V (H), then the cost of a homomorphism f is ∑ u∈V (G) cf(u)(u). For each fixed digraph H , the minimum cost homomorphism problem for H , denoted MinHOM(H), can be formulated as follows: Given an input di...
متن کاملA pointfree version of remainder preservation
Recall that a continuous function $fcolon Xto Y$ between Tychonoff spaces is proper if and only if the Stone extension $f^{beta}colon beta Xtobeta Y$ takes remainder to remainder, in the sense that $f^{beta}[beta X-X]subseteq beta Y-Y$. We introduce the notion of ``taking remainder to remainder" to frames, and, using it, we define a frame homomorphism $hcolon Lto M$ to be $beta$-proper, $lambd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Syst. Sci.
دوره 76 شماره
صفحات -
تاریخ انتشار 2010